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The time evolution of the macroscopic variables of a system initially in a 
state far from thermal equilibrium is studied from a statistical mechanical 
point of view. Exact nonlinear transport equations for the mean values 
and linear nonstationary Langevin equations for the fluctuations around the 
mean path are derived. Connections between the dynamics of fluctuations 
and the transport equations are discussed. The Langevin random forces 
depend on the macroscopic state and they are related to the transport 
kernels by a fluctuation-dissipation formula. 
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1. I N T R O D U C T I O N  

Macroscopic systems composed of a great number of  identical constituents 
exhibit on a macroscopic level a rather simple behavior described by equa- 
tions of  motion for a few macrovariables. The statistical mechanical theory 
relates this macroscopic dynamics with the underlying microscopic process. 
In spite of  its complexity in detail the microscopic process has simple formal 
properties: it is a special Markovian process which is completely determined 
by the Hamiltonian H and the initial density matrix p(to). These formal 
properties of the microscopic process lead to a definite structure of  the 
macroscopic dynamics. In the present paper we examine this connection for 
closed systems which are initially in a state of  constrained equilibrium 
arbitrarily far from thermal equilibrium. 

The consideration of a special class of initial states is a necessary re- 
striction inherent in every statistical mechanical theory of  macroscopic 

1 Institut ffir Theoretische Physik, Universit~it Stuttgart, Germany. 
2 Present address: Department of Physics, Temple University, Philadelphia, Pennsyl- 

vania. 

479 
0022-4715/78/1100-0479505.00[0 �9 1978 Plenum Publishing Corporation 



480 Hermann Grabert  

dynamics. The macroscopic laws describe in general an irreversible process 
and therefore they cannot have the same form for every initial state p(to). 
We are mainly interested in initial states that are experimentally attained in 
a reproducible preparation. The most important class of such states are the 
states of constrained equilibrium. 

The time evolution of the macroscopic variables of a system consists 
generally of two parts: the organized motion and the disorganized motion. 
The organized motion describes a reversible "ideal" subdynamics of the 
macrovariables in which the time rates of change of the variables are com- 
pletely determined by the macroscopic state at the considered instant of 
time. The disorganized motion reflects the influence of the large number of 
microscopic variables and can again be decomposed into two parts: the 
systematic irreversible part and the random part. The first part is deter- 
mined by the macroscopic states at former times. The past history affects 
the time rates of change of the macrovariables at the considered instant of 
time by a retarded interaction of the macrovariables established by inter- 
mediate microscopic excitations. The systematic part leads to the damping 
terms in the macroscopic equations. The random part drives the fluctuations 
of the macrovariables and thus maintains their irregular motion. 

For systems in the linear regime near thermal equilibrium this decompo- 
sition of the macroscopic motion has been carried out by Mori (1~ using pro- 
jection operator techniques. Mori's projection operator extracts a linear 
term from the time rates of change of the macrovariables. This linear term 
coincides with the organized motion part in the vicinity of thermal equilib- 
rium. The evolution law of systems far from equilibrium is generally non- 
linear. In a previous work ~2~ we have proposed a method to derive exact 
nonlinear equations of motion for the macrovariables. This approach will 
be used to extend Mori's theory to the region far from equilibrium. 

The systematic and random parts of the disorganized motion are not 
independent, but they are related by the second fluctuation-dissipation 
theorem, a,3~ This internal relationship is of a very general nature, as both the 
systematic irreversible part and the random part come from the same origin. 

As long as a system is in the linear regime near thermal equilibrium the 
random part of the time rate of change of a macrovariable is independent of 
the macroscopic state. For such systems the second fluctuation-dissipation 
theorem has been derived from a unified statistical mechanical point of view 
by Mori. (~ Systems far from equilibrium are driven by random forces that 
depend on the macroscopic state. We shall establish in this context a general- 
ized form of the second fluctuation-dissipation theorem. 

The present work has features in common with several other works. 
An early attempt to develop a general foundation of a statistical mechanics 
of irreversible processes was made by Green. (4~ By assuming a stationary 
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Markov process of the macrovariables, Green derived a Fokker-Planck 
equation for the macroscopic joint probability and established general ex- 
pressions for the transport coefficients. Zwanzig (5~ introduced the pro- 
jection operator technique that leads to formally exact equations of motion 
and enables systematic perturbative approaches. For classical systems that 
are initially described by a microcanonical distribution, Zwanzig (6,7~ 
derived an exact generalized master equation for the macroscopic single- 
event probability. Equations of motion for the joint and conditional prob- 
abilities that describe the time evolution of correlation functions have been 
obtained recently. (8~ 

From Zwanzig's master equation closed transport equations for the 
mean values of the macrovariables can be derived by making several assump- 
tions. (6'7~ On the other hand, it seems to be more straightforward to derive 
the transport equations directly from the microscopic dynamics. By extending 
the projection operator technique, Robertson (9~ put forward closed equations 
of motion for the mean values of the macrovariables. More recently, this 
approach has been used by Kawasaki and Gunton (10~ to determine nonlinear 
transport coefficients in fluids. However, this theory does not treat the time 
evolution of fluctuations. 

Both relaxation and fluctuations of the macrovariables have been 
studied by Mori (1~ using projection operator techniques in the space of 
observables. But he uses a high-temperature approximation to his initial 
density matrix, which restricts the theory to the linear regime near thermal 
equilibrium. The aim of the present work is to get rid of this restriction and 
to develop a theory that leads to closed transport equations in the nonlinear 
regime and determines the time evolution of fluctuations around the mean 
path. 

The paper is organized as follows. We work in the framework of quan- 
tum mechanics, as the corresponding classical argumentation is obvious. 
The macrovariables are assumed to be represented by Hermitean Hilbert 
space operators. The system is closed and the dynamics is governed by a 
time-independent Hamittonian. Both the generalizations to non-Hermitean 
macrovariables and to time-dependent Hamiltonians are straightforward, 
but they would complicate the notation unnecessarily. 

In the next section we consider the organized motion of the macro- 
variables. The disorganized motion is decomposed into a systematic and a 
random part in Section 3. There, we also derive exact transport equations 
for the mean values and establish exact Langevin equations for the fluctu- 
ations around the mean values. The correlations of the random forces are 
related to the disorganized motion terms of the transport equations. Some 
features of the results obtained are summarized in Section 4. A short sum- 
mary of the main results has been given in Ref. 11. 
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2. ORGANIZED MOTION 

2.1. Generalized Canonical Density Matr ix  

Let {A j} be the set of macrovariables of a system. The mean values of 
these variables at time t are denoted by {aj(t)}. These mean values specify the 
macroscopic state of the system. The full microscopic state is specified by the 
density matrix p(t). Suppose we only know the macroscopic state. Can we 
say anything about the microscopic state ? It is well known that we may use 
information theory to determine the "bes t"  microscopic state corresponding 
to the given information about the system. This state is the one having maxi- 
mum Gibbs entropy consistent with the given information and it has the form 
of a generalized canonical density matrix 

~(t) = Z-l(t)e-~r (1) 

(summation over repeated indices is implied) where the parameters {~j(t)} 
and the normalization factor Z( t )  are determined by 

tr #(t) = tr p(t) = 1, tr Aj~( t )  = tr Ajo( t )  = aj(t) (2) 

These equations explain the parameters {;~j(t)} as functions of the mean values 
{aj(t)}, and vice versa. It is clear that the generalized canonical density 
matrix #(t) is just a part of the precise density matrix p(t). It is the part that 
is already determined by the macroscopic state. By definition, the generalized 
canonical density matrix yields correct mean values of the macrovariables. 
On the other hand, it is completely determined by these mean values, so that 
the time dependence of the generalized canonical density matrix arises only 
through {aj(t)} or {)~j(t)}, respectively. We write 

~(t) _-- /5[aj(t)l = ~[~j(t)] (3) 

2.2. Organized Mot ion  of Mean Values 

The dynamics of the system is governed by the Liouville operator 
defined by 

n X  = [H, X] (4) 

where H denotes the Hamiltonian. If  the microscopic state at time t is de- 
scribed by the density matrix p(t), the time rate of change of a mean value 
aj(t) reads 

dj(t) = tr p(t)//j (5) 

where 

,4j = ifl_Aj (6) 
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The organized motion part of the time rate of change of a macrovariable is 
already determined by the macroscopic state at the considered instant of 
time and is given by 

~j(t) = tr t~(t)Aj -= vj(t) (7) 

The organized drift vj(t) is not an explicit function of time but depends on t 
only through {aj(t)} or {Aj(t)}, respectively: 

vj( t)  - vs[a~(t)] -- vA~(t)] (8) 

The organized drift is reversible. To make this clear, we define the entropy of 
the system by 

S(t) = - t r  ~(t) In t~(t) --- In Z(t) + Aj(t)aj(t) (9) 

It is well known that there is not a unique way to extend the equilibrium 
definition of the entropy to nonequilibrium states. Clearly, Eq. (9) defines 
the entropy as a macroscopic quantity and it ensures that familiar thermo- 
dynamic relations like 

hi(t) = OS(t)/Oaj(t) (10) 

are still valid in nonequilibrium. These relations are easily shown if we use 

Z(t) -- tr e-ZJ(~)AJ; O[lnZ(t)]/~Aj(t) = -a j ( t )  (11) 

and observe that the parameters {hi(t)} are functions of the mean values 
{aj(t)}. The formal similarity of S(t) to the equilibrium entropy has led 
others (9.1~-14) to this definition of the nonequilibrium entropy. 

Using (10), we find for the time rate of change of the entropy 

S(t) =- Aj(t)~j(t) (12) 

This bilinear form shows that the parameters {hi(t)} are the forces conjugate 
to the flows {fij(t)}. 

With the aid of Kubo's identity (15~ 

f2 [ Y, eXl -- d .  e~X[ Y, X ] e  (~-~x  (13) 

and the definition (1) of ~(t) one readily establishes that 

-i~_~(t) = Aj(t) d~ e-~k(t~A~Aje~(t~A~(t) (14) 

The trace of this expression vanishes, and we obtain 

hj(t)vj(t) = 0 (15) 
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where we used (7). As a consequence of (12) and (15) we find that the 
organized motion does not contribute to the time rate of change of the 
entropy. Consequently, the organized drift is reversible. 

2.3, Organized Mot ion  of  Fluctuat ions 

We shall now consider the organized motion of the fluctuations of the 
macrovariables. The fluctuations are defined by 

3Aj(t) = Aj(t)  - aj(t) (16) 

where 

Aj(t)  = e~tAj (17) 

is the macrovariable in the Heisenberg representation. The time rate of 
change of a fluctuation reads 

~Aj(t) = iQ_Aj(t) - ds(t ) (18) 

To determine the organized motion part 3Aj(t) of this time rate of change, we 
require that the organized motion describes a closed subdynamics of the 
macrovariables in which the system propagates along a succession of gener- 
alized canonical density matrices. Let us assume that the system is in a state 
described by a generalized canonical density matrix at time t. Then the 
precise time rate of change of the density matrix is given by Eq. (14). In 
terms of the time rates of change of the mean values and the fluctuations at 
the considered instant of time, this may be written as 

-ifl_~(t) = hj(t)dj(t)~(t) 

f; + aj(t) d~ e-~k(t~A~[e-~at~dj(t)]e~X~(t)A~(t) (19) 

This precise time evolution will lead to a deviation from the generalized 
canonical form as the evolution law of the generalized canonical density 
matrix is given by 

~ ~(t) - "t" (20) 
O~[ak(t)] 

aA ) 
Q 

so that in general 

~t ~(t) ~ -ifl_~(t) (21) 
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Using (1) and (11), we find 
1 

~fi[Ak(t)]~j(t) = -- fo d~ e-"a~(t)A~[Aj -- aj(t)]e"a~(~)A~fi(t) (22) 

and Eq. (20) may be written as 

~t #(t) = - d~ e-"~k(')ak[A~ -- az(t)] aj[ )e p(t) (23) 

Since the organized motion will not lead to deviations from the generalized 
canonical form of the density matrix, the right-hand sides of (19) and (23) 
must be identical if the precise time rates of change ~(t)  and 8Aj(t) are re- 
placed by their organized motion parts tij(t) = vj(t), ~Aj(t). This requirement 
leads to 

a~k(t) . .  
hj(t)3~(t) = - 3Ak(t) ~ vat  ) (24) 

We have used (15) and (16). With (10) is easy to show that 

gAj(t)/~ak(t) = Ohk(t)/Oaj(t) (25) 

and from (15) we find 

a)b(t) vj(t) = - a j ( t )  Ovj(t) (26) 
Oak(t) Oak(t) 

so that (24) may be written as 

Ovj(t) 
Aj(t)8.~(t) = hi(t) ~ ~Ak(t) (27) 

This equation determines only a certain linear combination of the organized 
motion parts of the time rates of change of the fluctuations. However, from 
(7) we get 

avj(t)aa~(t) = tr[[aa~(t)a~(t) e_~tsAj(t)l (28) 

and we should certainly require that &~j(t) is a part of the precise time rate 
of change ~Aj(t) of the same variable. Hence, we obtain 

8Aj(t) = f~jk(t)SA~(t) (29) 

where 

ovj ( t )  
f2yk(t) --  f~jk[al(t)]  = Oa~(t) (30)  

is an effective frequency that depends on the macroscopic state. 
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In this way the organized motion has a self-reproducing property. In 
fact, if we insert S~(t)  instead of ~Aj(t) in the right-hand side of Eq. (28), we 
again obtain the same frequencies f~j~(t). This is easily seen by using the 
relations 

tr 8if(t) tr 8~(t) A. 
8a~(t) = O, 8a~(t) ' = 8~s (31) 

which follows from (2). 

2.4. Genera l ized Canonical  Corre la t ions  

For the following it is convenient to introduce a "generalized canonical 
correlation function" of time-dependent variables X ( t )  and Y(s)  by (t >/s) 

(x( t ) ,  ~(s)) = (Y(s), x(t))* 

= I da tr{~(s)[e-~L~g(t)]e-~/s>A,[e -'nsY+(s)]e~a/~)a,} (32) 
d 0 

This correlation function is particularly simple for dynamical variables in the 
Heisenberg representation 

X ( t )  = e ~ t X  (33) 

In this case (32) may be written as 

( X( t ) ,  Y(s ) )  = da t r{~(s)X( t  - s)e-~J(~)AJ y+e~/s~A,} (34) 

Equation (34) makes it obvious that the generalized canonical correlation 
function reduces to Kubo's correlation function (15) in thermal equilibrium. 
For classical systems that are at time s in a state described by a generalized 
canonical distribution function, (34) coincides with the ordinary definition 
of the correlation function. Further, it can easily be shown that the generalized 
canonical correlation function at equal times (X( t ) ,  Y( t ) )  has the usual 
properties of a scalar product in the space of dynamical variables. The time 
dependence of (X( t ) ,  Y( t ) )  arises only through {aj(t)}, and it can in principle 
be completely evaluated if the mean motion is known. This clearly shows that 
(34) generally has little in common with the ordinary correlation function of 
dynamical variables. The generalized canonical correlation function should 
be looked upon as an appropriate arithmetic quantity. Its usefulness appears 
if we notice that (14), (22), and (32) lead to (t/> s) 

tr[~(s)i~_e-'~sX(t)] = (i~_X(t), l ( s ) )  = (X( t ) ,  Ak(s))ak(s ) (35) 
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and 

t r ( ~  e - ~ s X ( t ) ) =  -(X(t) ,  3A~(s)) (36) 

where I denotes the identity operator. Equations (35) and (36) can be used to 
derive 

vj(t)  = (Aj( t ) ,  Ak(t)),~k(t) (37) 

evi(t)/a;~k(t) = - (Aj( t ) ,  3Ak(t)) (38) 

t~aj(t)/8,~k(t) = -- (3Aj(t), 3Ak(t)) (39) 

Equation (37) makes some of the dependence of the organized drift on the 
conjugate forces more explicit. In particular, we immediately get the linear 
approximation if the generalized canonical correlation functions are evalu- 
ated with the equilibrium density matrix. From (38) and (39) we find 

evj(t)  = (~nk( t ) ,  ~a , ( t ) ) -~ (A j ( t ) ,  3n , ( t ) )  (40) ~)~,~(t) = eak(t)  

This equation gives us the connection of ~jk(t) with Mori's collective fre- 
quencies (z) which are the equilibrium values of ~j~(t). 

2.5. Project ion Operator  

The organized motion can be extracted from the microscopic dynamics 
by means of a time-dependent projection operator. From (7) and (29) we get 

- -   j(t) + 

= tr t~(t)~4j + 3Ak(t )  tr ~ Aj (41) 

= e ~Lt P(t)Aj 

where P(t) is defined by 

e (t) x (42) P(t)X = tr # ( t ) X  + [Aj - aj(t)] t r ~  

The projection operator P(t) is not an explicit function of time, but its time 
dependence arises only implicitly through the mean values {aj(t)}. Projection 
operators of this type have been introduced in a previous work(2) in a more 
general context. With the aid of (32), (36), and (39) the projection operator 
P(t) can be written as 

P(t)X = tr # ( t ) X  + [Aj - aj( t)](~Aj(t) ,  3A~(t))-Z(e 'LtX,  3Ak(t)) (43) 

This form clearly shows that P(t) is a natural generalization of Mori's time- 
independent projection operator. (1) 
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The following properties of P(t) are easily established with the use of 
(31), (42), and (43): 

IP(t)lP(t') = P(t ')  (44) 

P(t)(c0 + cjAj) = Co + cjAj (45) 

tr[p(t)P(t)X] = tr g( t )X  (46) 

(dL~P(t)X, 3Aj(t)) = (e~atX, 3Aj(t)) (47) 

The first relation implies the projection operator property for t = t'. Equa- 
tion (45) shows that P(t) projects out the macrovariables, e~atp(t)X is the 
Heisenberg representation of the projected part of a dynamical variable X. 
According to (46), the expectation value of e~atP(t)X is given by the general- 
ized canonical expectation value of X. Finally, (47) shows that datP( t )X  and 
X(t )  = e~atX have the same generalized canonical correlations with the 
fluctuations of the macrovariables at the same time. 

For later use we also consider the time derivative of P(t). By differentiat- 
ing (44) with respect to t and t', respectively, one easily establishes that 

P(t) = P(t)P(t)[~ - P(t)] (48) 

An explicit expression for P(t) follows from (42). We find 

e2~(t) 
P ( t ) X  = [Aj - aj(t)]dk(t) tr eaj(t) 8ak(t) X (49) 

3. ORGANIZED A N D  D ISORGANIZED M O T I O N  

3.1. Memory  Functions and Random Forces 

The precise time rate of change of a macrovariable Aj(t)  splits up into 

dj(t) = ~ ( t )  + rj(t)  (50) 

This decomposition defines the disorganized-motion part Fj(t). By using (41) 
we see that 

r j( t)  = e~Z~[~ - P(t)]Aj (51) 

Fj(t) may be looked upon as the total microscopic force acting on a macro- 
variable. It has the property 

(Pj(t), M( t ) )  = 0 (52) 

for every macrovariable M(t )  = CoI(t) + cjAj(t). This follows from (46), 
(47), and (51), and it expresses the fact that I'j(t) gives no contribution to the 
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organized motion of the macrovariables. We may say that the microscopic 
force Fj(t) is not correlated with the macrovariables at the same instant of  
time (in the sense of generalized canonical correlations). However, I 'j(t) is 
correlated with the macrovariables at earlier times s. These correlations can 
be used to split off a systematic part  of  rift). 

The appropriate quantities characterizing the influence of the macro- 
variables at time s on the time rate of  change at time t are the memory 
functions Kj(t, s) and 4,jk(t, s) defined implicitly by the decomposition 

P t 

r / t )  = | du [K/t, u) + c~jk(t, u) gAk(u)] + Fj(t, s) (53) 
d ~  8 

where Fj(t, s) is not correlated with the macrovariables at the earlier time s 3 

(Fi(t, s), I(s)) = tr[~(s)e-'aSFj(t, s)] = 0 (54) 

(Fj(t, s), 3Ak(s)) = 0 (55) 

It  follows that the generalized canonical correlation of Pj(t) with a macro- 
variable M(s) = col(s) + ejAj(s) takes the form 

(rif t) ,  M(s)) = du [K/t, u)(I(u), M(s)) + ~j~(t, u)(~Affu), M(s))l (56) 

which makes explicit the effect of correlations between macrovariables. These 
long-lived correlations are not included in the memory  functions. 

Equation (53) can be viewed as a decomposition of the microscopic 
force Pj(t) into a systematic and a random part. The first term on the right- 
hand side of (53) describes a systematic contribution of the history of the 
macrovariables in the time interval s < u < t to the microscopic force 
rj(t) .  The remaining part  is described by the random force Fj(t, s). 

The decomposition depends on time s. Up to that time the history is 
taken into account. The effect of  the macrovariables at times prior to s on 
the time rate of change at time t is included in the random force Fj(t, s). That  
is why we might consider (53) with s equal to the initial time of preparation 
to = 0 as the genuine decomposition of r j ( t )  into a systematic and a random 
part. However, the more general decomposition with variable s will turn out 
to be very useful. 

The decomposition (53) is uniquely determined by the requirements (54) 
and (55), which can be expressed as 

P(s)e-'nsrj(t, s) = 0 (57) 

3 Note that the {Fj(t, s)} are not dynamicalvariables, so that the basic definition (32) of 
the generalized canonical correlation function has to be used. If the correlated variables 
depend on several times, we agree to average over the generalized canonical density 
matrix at the earliest time. 



490 Hermann Grabert 

Here we have made use of  (46) and (47). F rom (53) we get 

Fj(t, s)  = Kj(t,  s )  + $,k(t, s)  8Ak(s)  (58) tos 

This can only be true if 

to to Fj(t, s)  (59) Fy(t, s)  = ei"-~P(s)e -'l~ 

By differentiating (57), we find with (48) 

tO Fj(t, s)  = P(s)[ilL - P(s ) l e - ' ~F j ( t ,  s )  (60) p(s)e-'~ Vs 

which combines with (59) to give 

Fj(t, s)  -~ ei~sP(s)[il_ - P(s)]e-'~SFj(t ,  s)  (61) 
tos 

This differential equation for  Fj(t, s )  has to be so]red with the final condit ion 

Fj(t, t) = Pj(t) = e*~t[~ - P ( t ) ] / j  (62) 

The solution can easily be derived if we put  

Fj(t, s)  = e'~*[1 - P(s)]Zj( t ,  s)  (63) 

This ansatz suggests itself, since Fj(t, s )  obeys (57). It turns out that  Fj(t, s)  
satisfies (61) and (62) if Zj( t ,  s)  satisfies 

to* 
Zj( t ,  s )  = - iB_[~ - P(s)]Zj( t ,  s )  (64) 

with  the final condi t ion  

Zj( t ,  t)  = A,  (65) 

The result is 

Fj(t, s) = e ~ [ l  - P(s)]G(s,  t)Aj (66) 

where G(s, t) is the t ime-ordered exponential  (s ~< t) 

G(s, t)  = T_ exp i du D_[~ - P(u)] (67) 

in which operators are ordered f rom left to right as time increases. The 
propaga tor  G(s, t) is an operator-valued functional o f  the mean path {a/u)} 
in the time interval s < u < t, since P(u) = P[aj(u)]. Consequently,  the 
r andom force Fj(t, s)  depends on the macroscopic states at times pr ior  to t. 
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If  we insert (66) into (61) we find 

Fj(t, s) = e~L~P(s)[iL -- ~b(s)][l -- P(s)]G(s, t)A i (68) 
as 

On the other hand, Eq. (58) expresses (~/Os)Fj(t, s) in terms of the memory 
functions. With (42) and (49) we obtain from (58) and (68) 

Kj(t, s) = tr{f(s)iL[l - P(s)]G(s, t)As} (69) 

and 

bjk(t, s) : tr, / 0ff(s) ill1 - P(s)]G(s, t)A~j} 

[ e~f(s) t)Aj] 
- dz(s) tr[oak-~-~a~(s) G(s, (70) 

J 

Clearly, the memory functions are functionals of the mean path between the 
former time s and the present time t, and ~sk(t, s) is in addition a function of 
{a/s)) .  

3.2. Transport Equations for the Mean Values 

The time rate of change of a mean value aj(t) splits up into 

c~i(t ) = vj(t) + ~#(t) (71) 

where yj(t) is the disorganized motion part of the mean flow dj(t). Since 
vs(t) is reversible, dissipation is included in the disorganized drift yj(t). From 
Eq. (50) we find 

79(t) = (I ' i(t)) (72) 

where (.-.) denotes the average over the initial ensemble p(0). Hence, ~j(t) is 
equal to the mean microscopic force. With the use of (53), 7j(t) can be de- 
composed into 

L ~q(t) = du K~(t, u) + fj(t, s) (73) 

where 

fj(t, s) = (Fj(t, s)) (74) 

is the mean random force. From Eq. (66) we get more explicitly 

ft.(t, s) = tr[~p(s)G(s, t)A~] (75) 

where 

~Ks) = Ks)  - f (s )  
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denotes the deviation of the microscopic state at time s from the generalized 
canonical form. 

We now assume the initial density matrix p(0) is of the generalized 
canonical form 

p(O) = #(0) (76) 

In this case we have 

fj(t, 0) = tr[3p(0)G(0, t)Aj] = 0 (77) 

For  systems that are initially in a state of constrained equilibrium the assump- 
tion (76) is fulfilled. States of constrained equilibrium can be prepared by an 
application of external fields which couple to the macrovariables and maintain 
a definite nonequilibrium state. If  these fields are switched off at time t = 0, 
a reproducible relaxation process takes place. Therefore, (76) will be satisfied 
for quite a few interesting processes. 

We now specialize (73) to s = 0 and take (77) into account. By using 
(69), we obtain the disorganized drift ~j(t) as a functional of the part history 
of the mean values 

•j(t) = rj{ak(u), 0 ~< u ~< t} 

= f [  du tr{t~(u)il_[~ - P(u)]G(u, t)Aj} (78) 

As the conjugate forces {Aj(t)} are functions of the mean values {aj(t)}, we 
just as well may interpret (78) as a functional of the past history of {hi(t)}. 

The functional (78) has already been derived by Robertson <9) and more 
recently by Kawasaki and Gunton<10) with the aid of a generalized master 
equation for tT(t). The present derivation within the generalized Langevin 
equation approach will enable us to examine the connection of the disor- 
ganized drift with the dynamics of fluctuations. 

If  we insert the explicit expressions (7) and (78) for the organized and 
disorganized drift into (71), we obtain a set of nonlinear integrodifferential 
equations that determine the mean path {as(t)}: 

dj(t) = vj[ak(t)l + y,{ak(u), 0 <<. u ~ t} 

fo' = tr[t~(t)djl + du tr{#(u)i~_[~ - P(u)JG(u, t)di} (79) 

The only assumption needed to derive these equations was the generalized 
canonical form of the initial ensemble. 
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3.3. Langevin Equations for  the  Fluctuat ions 

Let us insert the decomposition (53) of the microscopic force into Eq. 
(50) and then subtract on both sides the average over the initial ensemble. 
This way we obtain a decomposition of the time rate of change of a fluctua- 
tion 3As(t) of the form 

~Aj(t) = f~jk(t) ~Ak(t) + du (~sk(t, u) 3Ak(u) + 3Fs(t, s) (80) 
S 

where 

~Fj(t, s )  = r j ( t ,  s )  - f j ( t ,  s )  (82) 
is the fluctuation of the random force with the properties 

(3rj(t, s)) = 0 (82) 

(~Fs(t, s), ~A~(s)) = 0 (83) 

Equation (80) is an exact Langevin equation for the fluctuations. The first 
term on the right-hand side is the organized motion part of 3As(t). It is con- 
nected with the organized drift vs(t ) by (30). The second term is a systematic 
disorganized motion part. The memory kernels r u) are determined by the 
mean path. An explicit expression is given in (70). This part can be related to 
the disorganized drift ~,j(t) in the following way: 

We consider the time evolution of the mean values of the macrovariables 
starting with an initial ensemble of the form 

e~(0) A ,~, p~(O) = #(0) + ~ ak(v) = #(0) + Ap(0) (84) 

By specializing (83) to s = 0, we find with (36) 

e#(O) 3Fs(t, 0) = 0 (85) tr 

and, consequently, 

tr Ap(0) 3Fj(t, 0) = 0 (86) 

For sufficiently small {Aak(0)} the ensemble pl(0) is of the generalized canoni- 
cal form, and hence, both the mean values 

aj(t) = tr ~(O)As(t ) (87) 

and 

asl(t) = tr pl(O)As(t) = as(t) + Aaj(t) (88) 

are solutions of Eq. (79). In the limit of infinitesimal {Aa~(0)} we find 

Ovj(t) Aak(t) + du Aak(u) (89) Ads(t) = Oak(t) 
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where 3Tj(t)/~ak(u) is a functional derivative of the functional 7j{ak(u), 
O<.u< . t } .  

On the other hand, we have 

Adj(t) = tr Ap(0)Aj(t) = tr ap(0) &~j(t) (90) 

where 3Aj(t) is the fluctuation around aj(t). With the use of (30) and (80), 
specialized to s = 0, we find 

~vj(t) . . . .  f~ Adj(t) = ~--~k(t) aak(t) + du r u) Aak(u) (91) 

where we have taken (86) into account. By comparing (89) and (91), we obtain 

~jk(t, u) = 3Tj(t)/3a~(u) (92) 

This equation expresses the memory functions ~bjk(t, s) in terms of the dis- 
organized drift. 

Equation (92) can also be derived directly from (70) and (78). (2) In this 
case one has to express dz(s) in Eq. (70) as a functional of the past history of 
{ak(s)} by (79). The present derivation does not use the molecular expressions 
and shows that (92) ensures the compatibility of the nonlinear macroscopic 
evolution law (79) with the linear evolution law for the microscopic state 
p(t). 

There is a further connection of the dynamics of fluctuations with the mean 
value equations (79). The disorganized drift 7j(t) defined by (71) may be 
written as 

7~(t) = tr p(O)Aj(t) - tr ts(t)•j(0) 

= - ds ~ tr[~(s)e-~as3Aj(t)] (93) 

where we have used (7) and (76). We now insert (80) to yield 

~ ~ tr[F(s)e-~L~3Ak(t)] 7j(t) = -- f2jk(t) ds ~s 

- - f f  dug~,k(t,u)f~ dS~str[~(s)e-'~'3A.(u)] 

- ~  ds t r [ ~  e-*~3Fg(t, s)] 

+ ds tr[g(s)ike-~a~3Fj(t, s)] (94) 
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Since fi(t) gives correct mean values of the macrovariables, we have 

fo; ~ 
ds ~ tr[~(s)e-'aS~Ak(t)] = tr fi(t)Ak -- tr ~(O)Ak(t) = 0 (95) 

and from (36) and (83) we obtain 

trI  0~7(s) e-~a~3Fs(t, s) t = -(~Fs(t, s), ~Ak(s))3tk(s ) = 0 (96) 
[ as 

Consequently, (94) reduces to 

P t 

~s(t) = Jo ds tr[~(s)il_e-~a~Fs(t, s)l (97) 

This relation can also be derived directly from the molecular expressions (66) 
and (78). We may replace 3Fs(t, s) on the right-hand side of (97) by Fs(t, s). 
Then, by use of (35) we obtain 

fo' ~#(t) = ds (Fs(t, s), &dk(s)),~k(s) (98) 

where we have taken (54) into account. Finally, we insert (80), specialized to 
t = s, and find 

f2 ~,s(t) = ds (Fs(t, s), Fk(s, s))Ak(s) (99) 

This relation gives us a connection between the generalized canonical corre- 
lations of the random forces and the disorganized drift characterizing the 
dissipation of the macrovariables. The correlation function (Fs(t, s), F~(s, s)) 
determines the influence of the conjugate force ~k(s) at time s on the time 
rate of change of the mean value as(t) at time t. Equation (99) may be looked 
upon as a generalized seeondfluetuation-dissipation theorem. It is an extension 
of the familiar fluctuation-dissipation theorem associated with Mori's 
Langevin equation. (1'3) 

The Langevin equation (80) determines the stochastic process of the 
fluctuations {3As(t)} in terms of another process, the stochastic process of 
the random forces. The usefulness of this description lies in the fact that it 
provides a better basis for approximations than the Heisenberg equations of 
motion. The random forces describe the influence of the eliminated micro- 
scopic degrees of freedom on the macroscopic dynamics, and they vary on a 
short time scale. The slow macrovariables are not much influenced by the 
details of the random force process within such short time intervals. That is 
why the stochastic process of random forces needs to be determined only 
approximately. A particularly simple situation occurs if there is a clear-cut 
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separation of the time scales of the slowly varying macroscopic and the 
rapidly varying microscopic processes. In this case, which will be considered 
elsewhere, the stochastic process of the macrovariables is approximatively 
Markovian. 

4. CONCLUSIONS 

In this article we have investigated the time evolution of closed systems 
initially in a nonequilibrium state. Separating an organized motion part of 
the time rates of change, we derived exact equations of motion (79) and (80) 
for the mean values and the fluctuations from the mean path, respectively. 
These equations are valid arbitrarily far from thermal equilibrium. In 
contrast to others/17-2~ we have not treated the nonlinear system by a non- 
linear Langevin equation for the macrovariables {Aj(t)} themselves; rather, 
we decomposed Aj(t) into a mean value and a fluctuation and treated them 
separately. 

This way, we directly obtained closed, generally nonlinear, equations of 
motion for the mean values (transport equations) and avoided the intro- 
duction of "bare" transport kernels. (18~ We displayed linear Langevin 
equations describing the nonstationary process of fluctuations around the 
mean path. The collective frequencies and the memory functions of the 
Langevin equations depend on the mean path. The random forces are related 
to the correct transport kernels by a fluctuation-dissipation theorem (99). 

Van Kampen's objection to the nonlinear Langevin equation (21~ does not 
apply to our treatment of nonlinear systems. Moreover, our exact equations 
of motion yield under the Markovian assumption approximate equations of 
motion that are in accordance with the results of the phenomenological 
theory using the system-size expansion. (2~-2~ This will be discussed in more 
detail separately. 

Recently Furukawa (25~ put forward another generalization of Mori's 
Langevin equation using semiphenomenological arguments. Furukawa re- 
lates the correlations of the random forces directly to the memory functions 
of the Langevin equations and not to the transport kernels as we do. The 
two forms of the fluctuation-dissipation theorem are only equivalent in the 
linear approximation. Further investigation shows that Furukawa's memory 
functions depend themselves on the unknown correlations of the macro- 
variables and are not determined by the mean path. 
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